Trainable COSFIRE filters for pattern

detection and representation learning
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COSFIRE

stands for

Combination of Shifted Filter Responses



Biological inspiration




Bank of 2D Gabor filters
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Gabor 3D representation
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3D array formed by
2D Input stacked outputs of d
2D Gabor filters

The use of a set of convolutions to compute a 3D tensor @
representation of a 2D image is older than CNNs



Use for edge detection
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3D Gabor -~ Max value reduction
2D Input representation (+thinning & thresholding)

The likely role of this type of processing in the brain is edge detection. In
computer vision gradient computation (Canny) is preferred over Gabor
representations for edge detection due to better efficiency.



Use for texture analysis

d

3D Gabor Clustering of Gabor
2D Input representation feature vectors

In computer vision Gabor representations are mainly used for
texture analysis, e.g. segmentation.

[Grigorescu et al, 2002]



Use for object recognition ?
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How to process this
representation
further to come to

object recognition

?

3D Gabor
2D Input representation

Some attempts, such as the shape context and the distance
set are prone to noise and background.



Back to biological inspiration




Vertex shape selective neurons in area V4
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Constructing a vertex detector by combining

the outputs of

ey

/

ine detectors

1) Identify features that give
strong response.

N



Constructing a vertex detector by combining
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Constructing a vertex detector by combining
the outputs of line detectors
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1) Identify features that give
strong response.

2) ldentify locations of strong
response. @

3) Shift selected feature planes
to bring strong responses
together to some common

point. 3¢



Constructing a vertex detector by combining
the outputs of line detectors
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strong response.

2) ldentify locations of strong
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3) Shift selected feature planes
to bring strong responses
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Constructing a vertex detector by combining
the outputs of

ine detectors

1)
2)

3)

|dentify features that give
strong response.

|dentify locations of strong
response.

Shift selected feature planes
to bring strong responses
together to some common
point.

Multiply selected shifted
feature planes.



“Training’ pattern

1)
2)
3)

4)

Configuration of a COSFIRE filter
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Stacked responses of
contributing filters

2D output of
COSFIRE filter

2D input

Identify features/filters that give strong response.
Identify locations of strong response.
Shift selected feature planes (responses of selected filters) to bring strong responses

together to a common point.
Multiply selected shifted feature planes (responses of contributing filters).

[Azzopardi & Petkov, 2013]



Application of a configured COSFIRE filter

) 4
5

Ihput Stacked responses of
iImage contributing filters

2D output of
COSFIRE filter

1) Apply a set of contributing filters, selected in the configuration phase.

2) Shift their responses by the respective shift vectors determined in the
configuration phase.

3) Multiply the shifted responses of the selected contributing filters.

[Azzopardi & Petkov, 2013]



Application to the detection of vascular
bifurcations

(Left) Retinal fundus image and (right) its vessel segmentation
from DRIVE data set [Staal et al., 2004]



Application to the detection of vascular
bifurcations

(Left) Retinal fundus image and (right) localization of its (107)
vessel bifurcations [Azzopardi & Petkov, 2011]



Specify a pattern of interest




Configuration of a COSFIRE filter

Selected pattern Superposition of Set of circles for Points of strong
of interest Gabor responses  finding strong responses

responses

COSFIRE filter structure:

1) Ellipses indicate the selected Gabor filters.

2) Red dots indicate the positions in which
responses are to be taken -> shift vectors.




Detection of similar bifurcations

DD

OS
el

Enlarged.

# COSFIRE filter

structure

6 out of 107 bifurcations o
detected. ®




Detection of similar bifurcations

38 out of 107 bifurcations
detected. This is better ...

but not perfect.

COSFIRE filter
+ rotated versions
(made by symbolic
manipulation)




Specifying another pattern of interest

Another selected
pattern of interest
(enlarged).

Configure another
COSFIRE filter, using an
undetected bifurcation.



Configuration of COSFIRE filter #2

Selected pattern Superposition of Set of circles for Points of essential
of interest #2 Gabor responses analysis responses

1) Ellipses indicate the selected Gabor filters.

!Fﬂ 2) Red dots indicate the positions in which

responses are to be taken -> shift vectors.

g Structure of COSFIRE filter #2:




Detection of similar bifurcations

40 out of 107 bifurcations
detected.

:

-4

COSFIRE filter #2

+ rotated versions
(made by symbolic
manipulation)



Detection of similar bifurcations

38 bifurcations 40 bifurcations 62 bifurcations
detected by #1 detected by #2 detected by #1 & #2

.
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COSFIRE #1 COSFIRE #2




Detection of similar bifurcations

6 Iteratively selected bifurcations.

Structures of the corresponding 6 COSFIRE filters.



Detection of vascular bifurcations

Patterns used for filter configuration
and the corresponding COSFIRE filters.
All filters use the outputs of the same
bank of Gabor filters. The only
additional operations are shifts and
point-wise geometric mean

Result achieved with 6 COSFIRE ~ computations. ©

filters: all 107 bifurcations are

detected, no false positives. ©




Detection of vascular bifurcations

T,

(0.973.0.9471)

0.9

Precision

A 10 Filters

088 0.9 1
Recall

Result achieved with 6 COSFIRE filters for the DRIVE
data set (40 images, more than 5000 bifurcations) ©



Bank of COSFIRE filters

d; d,

Input Responses of Responses of
image contributing filters ~ COSFIRE filters

* First layer: some fixed filters (e.g. Gabor filters).
» Second layer: COSFIRE filters. A different training pattern is used for the configuration of
each plane. In total d, different training patterns.




Another type of contributing filter - DoG

Response of a COSFIRE filter
computed as the geometric
mean of multiple shifted copies
of the DoG response.

Input Response of
image a DoG filter

The shift vectors are determined
by the analysis of a prototype
pattern.




DoG-COSFIRE filters for vessel segmentation

Input
image

Responses of
DoG filters of
different sizes

Superposition of
responses of
COSFIRE filters

Responses of many COSFIRE filters
computed from the responses of
the same DoG filters as the
geometric means of multiple
shifted copies of the DoG
responses.

Each COSFIRE filter detects vessels
of specific width and orientation.

[Azzopardi et al., 2015]



Color-DoG-COSFIRE filters

The contributing filters are DoG of different sizes
applied to the color planes of an input image.

[Gecer et al., 2017]



freq / KHz

COSFIRE features for sound

Scream Scream (peaks)
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time (seconds) time (seconds)
Gammatone representation in the Constellation of local energy peaks in
time-frequency domain the time-frequency domain

Different filters can be configured for different sound types (scream, gun
shot, breaking glass, etc.) and instances of sound.
[Strisciuglio et al., 2017, 2019]



CNN-COSFIRE filters
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An intermediate representation in
Wy, hg, 64 a pre-trained CNN can be seen as

output of a set of contributing
filters. Here relu3-3 of VGG16.

[Lopez Antequera et al., 2019]



CNN-COSFIRE contributing filters

Configuration
pattern Relu3-3 (of VGG16) representation of configuration pattern

-

Test Relu3-3 (of VGG16) representation of test pattern
pattern

[Lopez Antequera et al., 2019]



CNN-COSFIRE filter (for face detection)

COSFIRE
output (green) Selected shifted Relu3-3 planes

COSFIRE Selected shifted Relu3-3 planes
output (green)

[Lopez Antequera et al., 2019]



More biological inspiration

A\ vertices  simple shapes
A




Hierarchy of COSFIRE filter banks

Input  Line detectors
image

Gy

COSFIRE detectors
of arrangements of
curved segments

COSFIRE vertex

[Azzopardi & Petkov, 2013]




Word spotting
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COSFIRE filters as trainable
feature extractors



Traditional pattern recognition framework

Raw data
(e.g. image)

9

Segment data

of interest (e.g.
part of image)

—

Extract features
from
segmented data

Classify feature

vector (by SVM, DT,
RF, LVQ, kNN, ANN, ...)

Object class
> /identity
/location

Requires (some)
recognition.

\

Requires careful
engineering and
domain expertise. }

f

Limitations to process natural data
in their raw form

This part at least
works mostly



COSFIRE features vs. hand crafted features

Hand crafted feature - number COSFIRE feature: graded
of crossings of a stroke with a response of a COSFIRE filter
fixed line. configured using training data.



Set of COSFIRE features

A set of COSFIRE filters that are automatically configured using training data.
One single example is needed to configure a COSFIRE filter.

A large number of COSFIRE filters can be configured automatically using
different images and different positions in each image.

The feature vector computed from an image is the set of maximum
responses of the configured COSFIRE filters to that image.

[Azzopardi & Petkov, 2013]



MNIST results with Gabor-COSFIRE feature
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max recognition rate: 99.48%
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[Azzopardi & Petkov, 2013]



MNIST results with CNN-COSFIRE feature vectors
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Method

Multi-column
deep NN [55]

Proposed

method

Human
performance
[58]

Multi-scale
CNNs [59]

Random

forests [56]

LDA on HOG
2 [58]
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[Gecer et al., 2017]



Butterfly data set results with color-DoG-COSFIRE
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[Gecer et al., 2017]



Recognition rate

Results for home event detection

Kesult comparison on TU Dortmund data set 11 classes
RR Pr Re F [Plinge et al., 2014]

COPE 94.27%  94.79%  95.19%  94.69%
BoF 90.05% 92.39% 88.82% 90.57%
P-BoF [20] | 89.94% 92.24% 88.67% 90.42%
BoSF 90.31% 92.73% 88.13% 90%
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[Strisciuglio et al., 2017, 2019]



Results for butterfly data set with CNN-COSFIRE
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[Lopez Antequera et al., 2019]



CNN-COSFIRE for place recognition

Reference Query

[Lopez Antequera et al., 2019]



CNN-COSFIRE for place recognition

[Lopez Antequera et al., 2019]



Feature
Definition

Training

Amount
of data

COSFIRE vs. CNN

COSFIRE

data driven

single step

one example
per filter

CNN

data driven

many iterations

very large number
of examples



Conclusions

COSFIRE filters:
Trainable with a single example

Effective for pattern detection and localization and
representation learning

Simple implementation

Available Matlab source code: matlabserver.cs.rug.nl



Thank youl!
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